Data Science Is No Panacea for High-School Math Education – EducationNext

Science, technology, engineering, and mathematics are the fastest-growing fields in terms of both student interest and job opportunities. For example, in California, the number of bachelor’s STEM degrees increased at a rate more than triple that of other degrees between 2010–11 and 2016–17. This is for good reason: studies show that STEM majors enjoy higher salaries and lower unemployment. The growth of STEM fields makes K–12 mathematics education more relevant than ever. Students without strong mathematical foundations will be shut out of these higher-paying and faster-growing fields. Hence, improving K–12 education, in particular for lower-income students and students of color, is of the utmost importance.

Given that context from the job market, the billion-dollar question is: why does the United States rank 36th out of the 79 countries included in the Programme for International Student Assessment math rankings? Those results followed two massive education-reform initiatives, No Child Left Behind and the Common Core state standards. Neither one lifted the United States into the top tier of performers globally.

There is no simple explanation for U.S. performance in these rankings, but to improve that performance, it is crucial to understand a key fact of U.S. math-education-reform initiatives: there is a hyper-focus on math curriculum and not enough attention paid to teacher recruitment, training, and retention. We know that a student’s success in math rests heavily on having a highly qualified teacher. A robust math curriculum is useless if teachers are not equipped with the material and training to deliver it well. Top-performing countries on the PISA exams, such as Japan, South Korea, Estonia, the Netherlands, and Poland, have varying curricula (with Estonia’s and Poland’s still influenced by the Soviet system), demonstrating that success in math education is less about changing curricula and more about who is teaching it and the training and support they get.

Increasing the number of highly trained math teachers addresses another education crisis that the math curriculum cannot address alone: capacity and access. According to the U.S. Department of Education’s Office for Civil Rights, advanced mathematics is offered at only 65 percent of high schools, and calculus is offered at only 50 percent of high schools. Moreover, the 5,000 high schools with more than 75 percent Black and Latino student enrollment offer advanced math and calculus at a significantly lower rate than that of high schools overall.

The increased importance of STEM fields for future career options, economic growth, and national security places particular emphasis on topics such as algebra and calculus. In particular, calculus is part of the curriculum in all STEM majors; students who complete a calculus course in high school have a significant advantage for pursuing STEM coursework and job opportunities during college. Calculus and advanced algebra are also at the heart of the “machine learning revolution” that led to recent breakthroughs in artificial intelligence, and an understanding of these topics is a key skill for work in data science. Far from being relics from the “Sputnik era,” calculus and algebra are more important than ever in K–12 education.

Unfortunately, recent efforts at “education reform,” including the (in progress) proposals for the California Mathematics Framework, devalue such fundamental mathematical courses. In particular, some have advocated replacing them with “data science,” asserting that this subject is more relevant than the “antiquated curricula” of algebra and calculus courses in our modern world. These advocates also claim that data science is somehow “a more equitable alternative to calculus” and can be a tool for addressing educational gaps. Both claims are false.

Claims about …….


Posted on

Leave a Reply

Your email address will not be published. Required fields are marked *